
LLNL-JRNL-656343

Implicit integration methods for
dislocation dynamics

D. J. Gardner, C. S. Woodward, D. R. Reynolds,
G. Hommes, S. Aubry, A. Arsenlis

July 1, 2014

Modelling and Simulation in Materials Science and
Engineering

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Implicit integration methods for dislocation

dynamics

D J Gardner1, C S Woodward1, D R Reynolds2, G Hommes1, S

Aubry1, and A Arsenlis1

1Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
2Department of Mathematics, Southern Methodist University, Dallas, TX 75275,

USA

E-mail: gardner48@llnl.gov, woodward6@llnl.gov, reynolds@smu.edu,

sylvie.aubry@llnl.gov, arsenlis@llnl.gov

Abstract. In dislocation dynamics simulations, strain hardening simulations require

integrating stiff systems of ordinary differential equations in time with expensive force

calculations, discontinuous topological events, and rapidly changing problem size.

Current solvers in use often result in small time steps and long simulation times.

Faster solvers may help dislocation dynamics simulations accumulate plastic strains

at strain rates comparable to experimental observations. This paper investigates the

viability of high order implicit time integrators and robust nonlinear solvers to reduce

simulation run times while maintaining the accuracy of the computed solution. In

particular, implicit Runge-Kutta time integrators are explored as a way of providing

greater accuracy over a larger time step than is typically done with the standard second-

order trapezoidal method. In addition, both accelerated fixed point and Newton’s

method are investigated to provide fast and effective solves for the nonlinear systems

that must be resolved within each time step. Results show that integrators of third

order are the most effective, while accelerated fixed point and Newton’s method both

improve solver performance over the standard fixed point method used for the solution

of the nonlinear systems.

Submitted to: Modelling Simulation Mater. Sci. Eng.

Implicit integration methods for dislocation dynamics 2

1. Introduction

Dislocation dynamics (DD) is a mesoscale method connecting the physics of dislocations

with the evolution of strength and strain hardening in crystalline materials. It simulates

explicitly the motion, multiplication, and interactions of discrete dislocation lines, the

carriers of plasticity in crystalline materials, in response to an applied load [1]. The

challenge in connecting the aggregate behavior of dislocations to macroscopic material

response has been one of computability. In DD, one needs to be able to trace the

simultaneous evolution of millions of dislocation lines over extended time intervals, in

order to directly compute the plastic strength of crystalline materials [2].

The system composed of moving and interacting dislocation segments is stiff. Two

aspects may affect the motion of dislocation nodes: the motion in response to mechanical

forces, and the motion in response to mesh optimization. An analysis of the eigenvalues

of the Jacobian matrix for a simple dislocation configuration shows that some eigenvalues

are large and others are small. In other words, some component(s) of the dislocation

node positions oscillate with high frequencies while others do not. For this class of

problems, an implicit numerical integrator needs to be used, as demonstrated in the

recent paper by Sills and Cai [3].

In this paper we are concerned with accurate and efficient numerical time integrators

to obtain dislocation segment displacements from velocities calculated at the nodes.

However, unlike the numerical integration methods in [3], we focus only on provably

accurate and stable methods utilizing fully implicit algorithms. Each time step in a

fully implicit simulation includes a nonlinear iteration to solve for new dislocation node

locations. Each of these iterations in turn requires nodal force calculations, and these

force calculations account for about 90% of run time. As a result, efficient nonlinear

solvers and time integrators are essential for effective simulations.

In dislocation dynamics codes, the standard methods of time-integration are the

forward Euler and the trapezoid algorithms [4, 5, 6, 7, 8]. The optimal parameters for

these algorithms are studied in detail in [3, 8] for a Frank-Read source. Other time

integration schemes have not been systematically studied in the literature.

A standard integrator in use in many application areas is the trapezoidal method

[9]. This method provides second order accuracy while only requiring information from

the last prior time step. As such, it is the simplest implicit second order method to

implement, and this was the original integration method implemented for the implicit

formulation in ParaDiS [1]. Higher order time integrators have the potential to provide

either greater accuracy for a given time step size or the same accuracy with a larger

time step. In the case of DD simulations, finding balance between good accuracy and

larger time steps is desired.

Furthermore, due to the adaptive nature of the models of the dislocation

discretization and discontinuous topological events, use of many prior time step solutions

is problematic. For this reason, linear multistep methods [9, 10], where multiple previous

solutions are required to achieve second or higher orders of accuracy, are not well-suited

Implicit integration methods for dislocation dynamics 3

for DD. Instead, use of multi-stage methods [9, 10], where only one prior solution is

required to achieve higher orders, can be a better fit. However, multi-stage methods

require the solution of multiple nonlinear problems, or a single but larger nonlinear

problem, within each time step. Hence a careful implementation of these methods,

along with the necessary nonlinear solvers, is essential for effective performance.

With larger time steps, the underlying nonlinear problems that must be solved for

each time step solution can be more challenging, due to the increased nonlinearity from

the larger time span. The easiest nonlinear solver to implement is a fixed point iteration

[11]. While this method can be very effective, its linear rate of convergence can lead to

long run times. Alternatively, Newton’s method with its quadratic rate of convergence

can be much faster. However, Newton’s method requires both a good initial iterate and

an effective linear solver to be applied within each Newton iteration. In recent years,

an acceleration method for fixed point iterations has been used effectively in various

applications to speed up traditional fixed point solves, making the accelerated method

competitive with Newton’s method [12, 13, 14, 15].

This paper develops and demonstrates a new and effective solution strategy for

implicit formulations of DD. The strategy uses Diagonally Implicit Runge-Kutta time

integrators and Anderson accelerated fixed point solvers for the nonlinear systems.

Results show significant speedup over a trapezoid integrator with a fixed point nonlinear

solver. The rest of the paper is organized as follows. Section 2 presents the DD

model and the differential system being integrated. Section 3 presents the integrators

developed and compared in this study, and Section 4 presents the nonlinear solvers.

The software used for all numerical results given in Section 6 is described in Section

5. Lastly, conclusions on the benefits and limitations of the methods discussed in the

paper are given in Section 7.

Implicit integration methods for dislocation dynamics 4

2. Mathematical Model

The interaction and evolution of dislocations constitute the dislocation dynamics method

developed in ParaDiS. Dislocation lines are discretized as segments bounded by nodes.

Several millions of segments can be present during a typical DD simulation and several

hundred thousand timesteps are usually made to reach one percent of plastic strain, as

a result DD simulations are computationally expensive and challenging.

Consider a dislocation segment [xi, xj], composed of two nodes xi and xj. The

total elastic force Fi(t) at the node xi is composed of (a) the force the segment exerts

on itself, (b) the force associated with the dislocation’s core structure, (c) the applied

force the simulation domain is subjected to, and (d) the interaction force all the other

segments in the simulation exert on the the dislocation segment [xi, xj]. This last force,

the interaction force, is the most expensive calculation of a dislocation dynamics method

as it scales as O(N 2), where N is the number of dislocation segments that are local to

the segment [xi, xj]. We note that a key component of ParaDiS allowing for scalable

dislocation dynamics simulations is its use of a Fast Multipole Method [16] for efficient

approximation of Fi(t); however these force calculations are still the dominant cost in

ParaDiS simulations.

Once the total force is determined, the velocity is calculated through the definition

of a mobility law M , a constitutive property that characterizes the material being

simulated. The velocity of node i is given as vi(t) by

vi(t) = M(Fi(t)). (1)

The mobility law M can be linear or non-linear depending on the the information known

about the material. Examples of linear mobility laws are given in [17] and a non-linear

mobility law in [18] for tantalum materials.

In DD simulations, the computational unknowns xi correspond to positions of the

nodes which change as a function of time using the standard equation of motion,

dxi(t)

dt
= vi(t). (2)

Two common practices used by DD simulators lead to potentially discontinuous

behavior and can have direct impact on the choice of time integration method. The

first arises from the piecewise linear discretization scheme for the dislocation segments

described above. Here, the dislocation network is approximated by a set of lines whose

positions are continuous, but whose tangents are discontinuous and whose curvature is

undefined. Due to the inherent interaction between space and time in the equations

of motion for each node, it is likely that this low degree of smoothness in the spatial

approximation results in a correspondingly low degree of smoothness in the temporal

dynamics of the dislocation network.

Second, a key component of the dislocation simulator, ParaDiS, is its ability

to dynamically adapt the dislocation topology between time steps, allowing for the

creation/deletion of new dislocation nodes and segments as the simulation proceeds. In

Implicit integration methods for dislocation dynamics 5

typical simulations of crystalline dislocation dynamics, the number of dislocation nodes

may vary by multiple orders of magnitude, especially in studies of strain hardening

processes wherein the dislocation density increases dramatically from an initially simple

state. This adaptivity process only occurs between time steps (not within steps), but is

performed repeatedly throughout the course of a simulation.

Implicit integration methods for dislocation dynamics 6

3. Time Integrators

We consider two methods for the implicit time integration used for evolving the DD

system (2). To define these, first consider the initial value problem (IVP) in general

form

y′(t) = f(t, y(t)), y(t0) = y0, (3)

where t is the independent variable (time), y(t) = [x0, x1, . . .] contains all of the

dependent state variables at time t, t0 is the initial time, y0 is the vector of initial

conditions, and f(t, y) = [v0, v1, . . .] contains the right-hand sides for each dependent

variable. In performing time integration with both methods, we denote yn as our

approximation to the solution y(tn), where we consider time steps t0 < t1 < . . ., with

step sizes hn = tn+1 − tn.

3.1. Trapezoid Integrator

The most common integrator used for implicit dislocation dynamics is the trapezoid

integration method, where the solution at each new time solves the equation

yn+1 = yn +
hn
2

(f(tn, yn) + f(tn+1, yn+1)) . (4)

Assuming sufficient continuity of f as a function of both y and t, this method is second

order, meaning that for each time step the local error satisfies

‖y(tn+1)− yn+1‖ ≤ Ch3max, (5)

under the assumption that yn = y(tn), where hmax is the maximum time step used over

all steps to get from t0 to tn, and C is a constant independent of the time step sizes

[9]. Globally, this method is O(h2), due to accumulation of local errors from one step

to the next. Thus, the accuracy of the approximate solution improves quadratically as

the maximum time step size decreases.

The trapezoid method, also known as the Adams-Moulton 1-step implicit method, is

the simplest second order 1-step method for implicit integration. Higher order implicit

multistep methods, such as other Adams-Moulton or BDF methods, require use of

multiple saved prior time step solutions. Given the adaptive nature of DD computations,

these older solutions would need to be projected onto the current solution space at every

update, and the resulting expense of these updates could become large. A 1-step method

is advantageous within a DD setting since it does not require saving multiple old values.

Implementation of the method requires the solution of a nonlinear system of

algebraic equations for the new time solution, yn+1, within each time step. This system

is defined as solving the nonlinear residual equation for y,

g(y) = y − yn −
hn
2

(f(tn, yn) + f(tn+1, y)) = 0, (6)

or more specifically through finding y such that

‖g(y)‖∞ ≤ εn, (7)

Implicit integration methods for dislocation dynamics 7

where εn is the nonlinear solver tolerance, and

‖g(y)‖∞ ≡ max
1≤i≤N

|gi(y)|

is the maximum norm.

Methods for such solves are discussed in Section 4. These solves can be accelerated

through computation of an explicit predictor. At the first time step and for newly

created nodes, ParaDiS uses the simple forward Euler predictor,

yn+1 = yn + hnf(tn, yn). (8)

While this predictor has second order local error, it is also a 1-step method and thus

does not require old solutions. For nodes where the value of f at the previous step is

known, ParaDiS uses an explicit linear multistep predictor,

yn+1 = yn +
hn
2

(f(tn, yn) + f(tn−1, yn−1)) . (9)

This predictor also has second order local error and requires saving the result of an old

function evaluation. The value of yn+1 computed from these predictors is then used as

the initial guess in the iterative nonlinear solver for the implicit solution.

Lastly, we note that ParaDiS updates the time step size based on the success or

failure of the nonlinear solver, through either increasing the step size on a successful

nonlinear solve, or decreasing the step size and retrying the step on a failed solve.

3.2. DIRK Integrator

We compare the above trapezoid integrator with higher-order embedded diagonally-

implicit Runge-Kutta (DIRK) time integration methods, of the form

zi = yn + hn
i∑

j=1

Ai,j f(tn + cjhn, zj), i = 1, . . . , s,

yn+1 = yn + hn
s∑
j=1

bj f(tn + cjhn, zj), (10)

ỹn+1 = yn + hn
s∑
j=1

b̃j f(tn + cjhn, zj).

Here, the zi denote the s internal stages of the Runge-Kutta method, each of which

explicitly depend on preceding stages and implicitly depend on only themselves. The

new time solution is given in yn+1, and an embedded solution is given in ỹn+1. Each

method is uniquely defined through the coefficients Ai,j, ci, bj and b̃j, i, j = 1, . . . , s,

where DIRK methods are characterized through the condition that Ai,j = 0 for j > i.

We note that unlike many standard Runge-Kutta methods, embedded RK methods

naturally allow for time step adaptivity based on a reliable estimate of the solution

error, since both yn+1 and ỹn+1 give different approximations for y(tn+1). Moreover,

embeddings result in significantly less expensive error estimates than those resulting

from either Richardson extrapolation or deferred-correction techniques.

Implicit integration methods for dislocation dynamics 8

In order to implement the method (10), in each time step we sequentially solve s

implicit systems for the stage solutions zi. To this end, at each stage we define the

nonlinear residual equation

g(z) = z−hnAi,i f(tn+cihn, z)−yn−hn
i∑

j=1

Ai,j f(tn+cjhn, zj) = 0, (11)

and we compute zi as the solution to this nonlinear algebraic system of equations

g(z) = 0. Our algorithms for solving these systems are shared with the trapezoid

method from Section 3.1, and will be discussed in detail in Section 4.

We accelerate convergence of the nonlinear solvers through supplying an explicit

predictor of the stage solution, z
(0)
i . In the computed results (Section 6), we investigate

three approaches for constructing the initial guess for each stage over the time step

tn → tn+1:

(a) use the solution from the beginning of the step, z
(0)
i = yn,

(b) use the previous step solution for the first stage, z
(0)
1 = yn, followed by use of the

previous stage solution for subsequent steps, z
(0)
i = zi−1,

(c) use the previous step solution for the first stage, z
(0)
1 = yn, and the quadratic

Hermite interpolant through {yn, f(tn, yn), f(tn+ckhn, zk)} for the remaining stages,

z
(0)
i = yn + f(tn, yn)

(
τ − τ 2

2hnck

)
+ f(tn + ckhn, zk)

τ 2

2hnck

where τ = hnci [19]; we choose ck so that ck 6= 0 and ck > cj for all j = 1, . . . , i− 1.

In addition to allowing increased accuracy and stability over linear multistep

methods (e.g. trapezoid), embedded DIRK methods allow efficient estimates of temporal

error, thereby allowing for robust step size adaptivity methods. To this end, we compute

the temporal error estimate

en = ‖yn − ỹn‖WRMS =

 1

N

N∑
k=1

(
yn,k − ỹn,k

rtol|yn−1,k|+ atol

)2
1/2

, (12)

where by yn,k we denote the k-th entry of the discrete vector yn, and whereN corresponds

to the total number of entries in yn (the total number of dislocation degrees of freedom).

We note that since this norm incorporates the relative and absolute tolerances, rtol and

atol, a norm value less than one indicates a “small” value with respect to the desired

integration accuracy.

We use this local truncation error estimate in two ways. First, we determine whether

the error in a given step is acceptable or if the step must be repeated, by requiring that

each step satisfy en ≤ 1. Second, we predict the maximum h that will meet the error

tolerances, which we use both when taking a new step and when repeating a step having

too much error. We keep track of the three most-recent error estimates, en, en−1, en−2,

and predict the maximum prospective step size as one of

h′ = hn e
−0.58/p
n e

0.21/p
n−1 e

−0.1/p
n−2 , (13)

h′ = hn e
−0.8/p
n e

0.31/p
n−1 , (14)

h′ = hn e
−1/p
n , (15)

Implicit integration methods for dislocation dynamics 9

corresponding to the PID, PI, and I time-adaptivity controllers, respectively [20, 21, 22,

23], and where p is the order of accuracy for our embedded method. Upon selection of

our candidate step size h′, we then set the new step size hn+1 as

hn+1 = min{ch′, ηmax hn}. (16)

Clearly, this temporal adaptivity approach results in a number of parameters that may

be tuned to optimize solver performance. In this paper, we use the default parameters

within the ARKode solver library (see Section 5). These values have been chosen to

perform well on a wide range of test problems, matching the parameters chosen in the

widely-used adaptive time integration solver, CVODE [24]. Specifically, we use the

safety factor c = 0.96, that provides a somewhat more conservative step size (96%

the size) than the value predicted by the estimates (13)-(15). In addition, the solver

adjusts this maximum growth factor ηmax based on the success or failure of the preceding

step. We allow the step size to grow by at most a factor ηmax = 20 at normal steps,

although in practice the adaptive error controller limits the step size on nearly all steps.

For the first step, which is typically chosen to be small to help get things started, we

allow a more aggressive maximum growth factor of ηmax = 104. However, when the

attempted step size was too large, we reduce this growth factor to force smaller steps

during difficult phases of evolution: after a step with too much error we set ηmax = 0.3,

and after a solver has failed to converge we set ηmax = 0.5. We note that only this last

value of ηmax = 0.5 deviates from the ARKode default; here it was chosen to match

the corresponding default value in ParaDiS, to result in more fair comparisons between

solvers.

As is common with IVP solvers [24, 25], to begin the adaptive approach, we

conservatively choose the first step so that an explicit Euler method would achieve the

desired accuracy level. To this end, we choose h0 =
(

2
‖y′′‖WRMS

)1/2
, where we estimate

y′′ using a finite difference approximation of the right-hand side,

y′′ ≈ 1

δ
[f (t0 + δ, y0 + δf(t0, y0))− f(t0, y0)] .

As will be further described in the next section, an additional source of flexibility in

these implicit solvers is that due to their iterative nature, the nonlinear systems g(z) = 0

need only be solved approximately. To this end, we define the factor εn as the nonlinear

solver convergence tolerance,

‖g(z)‖WRMS ≤ εn. (17)

Because the error tolerances are embedded in the weights applied in the norm for the

error test, if each step satisfies the constraint that en ≤ 1, then the local error of the

solutions should be within allowable error. Thus, the actual value used for εn may be

modified (while staying below 1) without affecting the accuracy of the overall solve. As

such, εn may be tuned to increase the computational efficiency of the method, as will

be further discussed in Section 6.

In regards to implementation, our DIRK method requires slightly more storage

than the trapezoid method. In general, our basic integrator and predictor algorithms

Implicit integration methods for dislocation dynamics 10

require (s+ 10) vectors, corresponding to: the stage right-hand sides f(tn + cihn, zi), an

error-weight vector for norm calculations, the solutions and right-hand side vectors at the

current and previous step (yn−1, yn, f(tn−1, yn−1) and f(tn, yn)), and 5 temporary vectors

used in implementing the algorithms described above. By comparison, the trapezoid

integrator requires two vectors. We note that these storage requirements (s + 10 vs 2)

are in addition to any memory required for the nonlinear solvers, that apply equally to

both methods, as will be discussed in the next section. Lastly, we point out that all

of these vectors store only the positions of each dislocation node, which corresponds to

a relatively insignificant fraction of the overall storage used within the ParaDiS data

structures.

Within this paper, we investigate three DIRK methods. The first is Billington’s

singly-diagonally implicit Runge-Kutta (SDIRK) method [26], where the solution yn+1

has global accuracy O(h3) and the embedding ỹn+1 has global accuracy O(h2). The

second method we use is the globally O(h4) (with O(h3) embedding) SDIRK method

given on page 100 of [27]. Our third DIRK algorithm is the higher-order ESDIRK 5/4a

method by Kværnø [28]. In that seven-stage method (six are implicit), the solution yn+1

has global accuracy O(h5) and the embedding ỹn+1 has global accuracy O(h4). We do

not reproduce the coefficients for these methods here due to space limitations, however

the coefficients defining each method are available in the cited references.

We selected the above three methods because out of all the DIRK methods we were

aware of, these included embeddings and required the least number of implicit stages per

step. As such, we felt that these promised to be the most efficient candidates available,

due to their computationally inexpensive temporal error estimates and minimal number

of implicit solves required per step.

Implicit integration methods for dislocation dynamics 11

4. Nonlinear Solvers

The implicit integrators discussed above all require one or more solves of a nonlinear,

algebraic system at each time step. These systems are given as either (6) for the

trapezoid integrator or as (11) for the DIRK integrators.

4.1. Fixed Point Iteration

The simplest method to solve these systems is a fixed point iteration. The iteration

proceeds from an initial iterate, y(0), and updates with

y(k+1) = φ(y(k)). (18)

For both the trapezoid and DIRK integrators in the previous section, we may construct

the fixed point iteration function as

φ(y) ≡ y − g(y), (19)

such that a y satisfying g(y) = 0 also satisfies y = φ(y), and is hence a fixed point

of φ. As will be discussed later on, if hn is sufficiently small this iteration is linearly

convergent, meaning that the error of the k + 1 iterate is a constant (less than 1) times

the error of the previous iterate. As a result, convergence can be slow when that constant

is close to 1.

In the 1960s, an acceleration method for fixed point iterations was developed in the

electronic structures community [12] and only recently has been used in other application

areas, where it has resulted in significant speedups of the original fixed point method

[13, 14, 15, 29]. The Anderson accelerated fixed point method is formulated as

Algorithm AA: Anderson Acceleration

Given y(0) and m ≥ 1.

Set y(1) = φ(y(0)).

For k = 1, 2, . . . , until ‖y(k+1) − y(k)‖ < εn

Set mk = min {m, k}.
Set Fk = [fk−mk

, . . . , fk], where fi = φ(y(i))− y(i).

Determine α(k) =
[
α
(k)
0 , . . . , α(k)

mk

]T
that solves

minα ‖Fkα‖2 such that
∑mk
i=0 αi = 1.

Set y(k+1) =
∑mk
i=0 α

(k)
i φ(y(k−mk+i)).

Basically, this algorithm uses a linear combination of up to m prior fixed point

function values rather than just the last one to update the solution. The specific

combination used is the one that would minimize the fixed point residual if φ were

linear. This algorithm requires a least squares solution of size N ×mk at each iteration

in order to solve the minimization problem. Thus, the expense of the algorithm increases

as the number of iterations grows, with an added O(Nmk) extra operations per iteration

over the standard fixed point method. We further note that in this algorithm, the norm

Implicit integration methods for dislocation dynamics 12

used to measure convergence is particular to the time integration approach, as previously

discussed in Section 3.

The convergence rate of the Anderson accelerated fixed point method has not yet

been fully established. However, recent work has shown that for linear φ and under

certain conditions, the method is equivalent to the GMRES iterative method for non-

symmetric linear systems [29]. In addition, for nonlinear systems the method has been

shown to be equivalent under certain other conditions to a variant of the quasi-Newton

method [30]. Lastly, recent work has shown that the accelerated fixed point method will

converge if the fixed point method does [31].

If φ(y) from (18) satisfies the Lipschitz continuity condition,

‖φ(y)− φ(y∗)‖ ≤M‖y − y∗‖ (20)

for all y, y∗, and the Lipschitz constant M is independent of y and y∗ and satisfies

0 ≤M < 1, then the iteration given by (18) converges to a unique solution of the fixed

point problem. Note that φ is not Lipschitz continuous unless f is. If L is the Lipschitz

constant of f , then M = hn
2
L for the trapezoid method and M = hnAiiL for the DIRK

methods, so the time step sizes must meet the condition

hn <
2

L
[trapezoid], or hn <

1

AiiL
[DIRK] (21)

in order to ensure convergence of the fixed point method [9]. In general, L� 1 for stiff

systems, so when the system is stiff, time steps may have to be quite small to ensure

convergence, and Newton’s method is often used as an alternate.

4.2. Newton’s Method

Newton’s method finds the solution, y, such that g(y) = 0. At the k-th iteration,

Newton’s method forms an update to its current iterate by finding a root of the linear

model

g(y(k+1)) ≈ g(y(k)) + Jg(y
(k))(y(k+1) − y(k)), (22)

where Jg(y
(k)) is the Jacobian of g evaluated at y(k). For large-scale problems, such

as arise in DD models, this linear system is solved inexactly with an iterative method.

Hence, the method is an inexact Newton method [32], and (22) is solved approximately

to a specified tolerance. The following is a brief outline of the resulting inexact Newton

method.

Algorithm INI: Inexact Newton Iteration

Given y(0).

For k = 0, 1, . . . , until ‖g(y(k))‖ < εn

For tolL ∈ [0, 1), approximately solve Jg(y
(k))∆y(k) = −g(y(k))

so that ‖Jg(y(k))∆y(k) + g(y(k))‖ ≤ tolL‖g(y(k))‖.
Set y(k+1) = y(k) + ∆y(k).

Implicit integration methods for dislocation dynamics 13

As with the Anderson acceleration algorithm, the integrators use different norms to

determine nonlinear and linear solver convergence in this algorithm, with the trapezoid

integrator using the maximum norm and the DIRK integrator using the WRMS norm.

Furthermore, the DIRK integrator sets the linear solver tolerance tolL = εl εn, whereas

the trapezoid integrator uses tolL = εl, based on the input value εl. Many strategies

have been employed in order to choose εl to minimize “oversolving” the successive linear

systems while maintaining adequately fast convergence of the overall nonlinear scheme;

for some strategies in use, see [11, 33].

Krylov methods, such as GMRES [34], are particularly attractive for solving the

linear systems in DD models since they do not require formation of the Jacobian matrix

as only the action of that matrix on a vector is needed. This matrix-vector product can

be approximated through a finite difference computation

Jg(y)v ≈ g(y + εv)− g(y)

ε
. (23)

Compared with fixed point iteration, Newton’s method additionally requires

computations with the Jacobian matrix, although within a Newton-Krylov framework

this additional requirement translates only to extra nonlinear function evaluations as

part of the finite difference calculation above. We caution that, for DD calculations, each

function evaluation does include computation of all forces and thus these evaluations

are costly. However, Newton’s method has a faster (quadratic) rate of convergence,

meaning that the error of the k + 1 iterate is a constant times the square of the error

in the previous iterate. Thus, once the iterates get close to the solution, convergence is

rapid.

Implicit integration methods for dislocation dynamics 14

5. Software

The software framework used to test the integrators and solvers discussed above is

comprised of the ParaDiS dislocation dynamics simulator and the SUNDIALS suite

including KINSOL and ARKode for nonlinear solvers and multi-stage ODE integrators,

respectively.

5.1. The Parallel Dislocation Simulator (ParaDiS)

ParaDiS [1] is a large scale dislocation dynamics simulation code to study the

fundamental mechanisms of crystal plasticity. It was originally developed at Lawrence

Livermore National Laboratory (LLNL). It is written in C (with a little C++) and

uses the MPI library for communication between processors. It runs routinely on

100-1,000 processors and scalability on 132,000 processors of BlueGene/L has been

demonstrated [2]. The code can be downloaded freely at paradis.stanford.edu. The

computational approach to dislocation dynamics used in ParaDiS is fairly simple. In

it, one introduces dislocation lines discretized in linear segments into the computational

volume and lets them interact and move in response to the forces imposed by external

stress and inter-dislocation interactions. The native time integrator and solver within

ParaDiS is the trapezoid method with the standard fixed point nonlinear solver. In

this work, we interfaced the SUNDIALS suite with ParaDiS, allowing for the use of

Anderson accelerated fixed point or inexact Newton’s method for solving the nonlinear

systems within each step of the native trapezoid integrator, or the use of diagonally

implicit Runge-Kutta integrators.

5.2. Suite of Nonlinear and Differential-Algebraic Equation Solvers (SUNDIALS)

The SUNDIALS suite of codes is a freely available package providing robust time

integrators and nonlinear solvers designed to be easily incorporated into existing

simulation codes [35]. Developed at LLNL, SUNDIALS includes the CVODE and IDA

packages of multistep ODE and DAE integrators, respectively, and their forward and

adjoint sensitivity-enabled versions, CVODES and IDAS, and KINSOL for solution of

nonlinear algebraic equations. The newest version of SUNDIALS also contains the

ARKode package with implementations of Runge-Kutta time integrators for ODEs.

The packages within SUNDIALS are written in C, and provide interfaces for programs

written in C++ and Fortran. SUNDIALS is written in a data-structure-neutral manner,

allowing for the use of user-supplied vector kernels and linear solvers that may be

optimally tuned for specific applications. In addition, SUNDIALS may utilize any of

a set of generic vector kernels (serial, parallel, threaded) or linear solvers (GMRES,

BiCGStab, TFQMR, PCG, FGMRES, direct, banded, LAPACK) that are supplied

with the suite. Table 1 includes a quick reference for the codes and methods used in the

SUNDIALS Package.

The accelerated fixed point and Newton nonlinear solvers used in the following

Implicit integration methods for dislocation dynamics 15

tests are from the KINSOL package within SUNDIALS. KINSOL is an evolution of the

original Newton-Krylov solver code for PDEs, NKSOL [36]. The newest version of the

package will contain the Anderson accelerated fixed point method as a derivative-free

nonlinear solver alternative to Newton’s method.

The adaptive DIRK methods used in this work are from the ARKode solver library

[37], that is also available in the newest version of the SUNDIALS suite. This library

provides a flexible framework for adaptive integration of systems of initial value problems

using explicit, implicit, or mixed implicit-explicit additive Runge-Kutta methods. While

distributed as a component within SUNDIALS, ARKode is developed independently at

Southern Methodist University.

Table 1. Definitions of code names and methods used in SUNDIALS

Name Meanings

SUNDIALS Suite of Nonlinear and Differential/Algebraic equation solvers

ODE Ordinary differential equation

DAE Differential/Algebraic equation

BDF Backward Differential Formulae, used for multistep solution of

ODE and DAE systems

RK Runge-Kutta method, used for multistage solution of ODE systems

CVODE ODE solver in SUNDIALS based on BDF methods

ARKode Additive Runge-Kutta ODE solver in SUNDIALS

IDA Implicit differential/algebraic equation solver in SUNDIALS

KINSOL Nonlinear equation solver in SUNDIALS

CVODES, IDAS Sensitivity-enabled ODE and DAE solvers in SUNDIALS

DIRK Diagonally implicit Runge-Kutta methods available in ARKode

Implicit integration methods for dislocation dynamics 16

6. Numerical Results

In the following subsections we present results from three test problems, each looking at

a different level of complexity. The first, the Frank-Read source problem, is a serial test

giving an indication of whether the new solver or integrators will provide larger time

steps. The second problem, the cold start test case, starts with a simple dislocation

line configuration and tests whether the new methods will lead to faster run times. It

also provides a first place to start narrowing down possible values for parameters in

the new methods. The last test, the warm start test case, runs a problem that has

already evolved and includes complex segment interactions, and is more indicative of

solver performance on “typical” simulations.

In the following results, “Trap” and “DIRK” refer to simulations run using either

the trapezoid integrator or a Diagonally Implicit Runge-Kutta integrator respectively.

The number following “DIRK” gives the order of accuracy of the method for the

simulation. The nonlinear solver used with the integrator is labeled “FP” for the

standard fixed point solver, “AA” for the Anderson accelerated fixed point solver and

“NK” for the Newton-GMRES solver. The maximum number of nonlinear iterations is

indicated by the integer following the letter “I”, and for the accelerated fixed point solver

the number of saved residual vectors follows the letter “V”. For example, “Trap AA I3

V2” indicates that the simulation was run using the trapezoid (Trap) integrator with

the Anderson accelerated (AA) fixed point solver allowing up to 3 nonlinear iterations

(I3) and 2 saved residual vectors (V2).

Furthermore, in many of these results we consider the “speedup” in the simulation

due to the use of advanced solvers and/or higher-order time integration methods. In

these results, if the native ParaDiS solver required wall-clock time Tnative for a given

problem, and a competing solver required wall-clock time T for the same problem, then

we compute the speedup resulting from use of the new solver as

% Speedup = 100
Tnative − T
Tnative

.

Additionally, the number of time steps reported for a method in the results below refers

to the total number of successful steps unless otherwise noted.

For each set of runs below we state the simulation tolerance used. In the case

of the trapezoidal solvers, the tolerance represents the variation in the nodal locations

below which we do not care to distinguish. In particular, the maximum difference in

each nodal location computed between two consecutive iterations is measured, and when

that maximum is below the tolerance, then the iterative process is finished. As such,

for the trapezoid solvers, the simulation tolerance refers to εn in (7) indicating how

accurately we solve the trapezoid nonlinear residual equation (6), i.e. how accurately we

solve the discrete problem, which itself only approximates the true continuous solution.

This difference between the true differential equation and the trapezoidal approximation

is never measured or controlled within the solver.

For ARKode, normally two tolerances are specified, as shown in (12). To mimic

Implicit integration methods for dislocation dynamics 17

the trapezoidal solver’s control over only absolute tolerance, we disabled the ARKode

relative tolerance by taking its value to be 10−30. We point out, however, that the term

“tolerance” has different meanings for the trapezoid and ARKode solvers. In ARKode

the tolerance refers to how accurately the computed solution solves the underlying

continuous differential equation, i.e. how accurately we approximate the true solution

to the problem. Thus for DIRK solvers, the simulation tolerances below refer to atol in

(12). Subsequent tolerances for all nonlinear and linear solves within ARKode are then

taken to be specified fractions of this absolute solution tolerance. As such, even with

the same “tolerance,” the trapezoid and ARKode solvers inherently measure different

types of error. However to be as fair as possible in the tests that follow, we apply the

same tolerance to both solvers.

We note that in all runs using the Newton-Krylov method below, the size of the

Krylov subspace in GMRES was taken to be 5.

Lastly, in addition to demonstrating how more advanced (and potentially costly)

nonlinear solvers and time integration strategies may be used on dislocation dynamics

simulations, we wish to provide recommendations regarding optimal options and

parameters for these solvers. Therefore, as our test problems progress from simplest

to most difficult, our choices of solver options and parameters will narrow as we

determine non-optimal choices for these problems. While we do not purport that our

final recommended solvers and options will be optimal for all dislocation dynamics

simulations, we believe that this exploration and narrowing will provide insight to

practitioners wishing to invest in new algorithms.

All runs were conducted on the LLNL Cab machine. Cab is a Linux cluster with

1,296 compute nodes, each containing two Intel Xeon 8-core E5-2670 chips and 32 GB

of memory. The CPUs run with a 2.6 GHz clock. The Frank-Read Source problem was

run on a single core, and all other tests were done on a single node utilizing 16 cores in

parallel with MPI.

6.1. Frank-Read Source

Simulations with the Frank-Read source serve as an initial starting point to gauge the

viability of these mathematical techniques in dislocation dynamics simulations. The

initial setup consists of a single dislocation between two pinned end points under a

constant external stress or a constant external strain. The external forces cause the

dislocation line to bow out. Eventually the dislocation line curls, reconnecting with

itself and giving rise to two concentric dislocations. This process repeats, producing a

spreading set of concentric dislocations as time goes on, as shown in Figure 1.

Results from the Frank-Read source are for a single serial run under a constant

strain rate of 1 s−1 to a final time of 50 µs with a simulation tolerance of 1.0|b|
(where |b| is the norm of the Burgers vector). Simulations use the native ParaDiS

trapezoid integrator with the standard fixed point solver, the trapezoid integrator using

the Anderson accelerated fixed point or Newton-GMRES solver, and the third through

Implicit integration methods for dislocation dynamics 18

(a) (b) (c) (d)

Figure 1. (a) A Frank-Read source is a straight dislocation segment anchored on two

nodes. (b)-(c) As an external stress is applied to the dislocation segment, the segment

starts to bow out between the two pinning points. (d) If the stress is sufficient, the

dislocation expands rapidly until it creates a dislocation loop. After a loop is created,

the initial segment is restored and can bow out again.

fifth-order DIRK methods described in Section 3.2. The nonlinear systems within the

DIRK methods are solved using either the Newton-GMRES method or the Anderson

accelerated fixed point solver. Methods using the Newton-GMRES solver utilize the

finite difference Jacobian-vector product given in (23). With each integrator and solver,

the number of nonlinear iterations is varied, and for the accelerated fixed point solver,

different numbers of saved residual vectors are tested.

For this simple test problem, all of our advanced nonlinear solvers and higher-order

time integrations perform well. Since we begin with a large array of solvers and options,

we present results for three classes of methods separately. First, in Figure 2 we plot

the total number of time steps required for a set of trapezoid-based solvers. Here, we

compare the native solver, consisting of a fixed-point nonlinear solver with two iterations,

the fixed-point solver but allowing three iterations, the Anderson-accelerated solver with

two through four iterations (using an acceleration space with one fewer iteration), and

the Newton-GMRES solver using from one through five nonlinear iterations and linear

solver tolerance factor εl of 0.1 and 0.5.

From these results some conclusions are immediately clear. First, the performance

of all three methods improves as the allowed number of iterations is increased; and use

of only a single nonlinear iteration gives rather poor results. This is understandable

since in these trapezoidal methods the time step size is increased/decreased purely due

to convergence/divergence in the nonlinear solver, irrespective of the resulting temporal

error in the computed solution. Second, as expected from their predicted convergence

theory, when allowing multiple iterations the Newton-GMRES solver performs the best,

followed by the accelerated fixed-point solver, and with the basic fixed-point solver

coming in last. Finally, we see that the Newton-GMRES solver performs best on this

problem when the inner linear solver tolerance factor is relaxed slightly to εl = 0.5.

In Tables 2 and 3 we present the total required time steps for a variety of diagonally

implicit Runge-Kutta solvers. Here, we vary the method order from three through

five, the number of allowed nonlinear iterations from two through four, the nonlinear

Implicit integration methods for dislocation dynamics 19

I2 I3
I2 V1

I3 V2
I4 V3 I1 I2 I3 I4 I5 I1 I2 I3 I4 I5

0

200

400

600

800

1000

1200

1400

1600
Ru

n
tim

es
 (s

)

Time Steps for Trap Methods on Frank-Read Problem

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ti
m

e
st

ep
s

FP AA NK εl0.1 NK εl0.5

Figure 2. Run time and number of time steps for the trapezoid integrator using the

FP, AA and NK solvers on the Frank-Read source problem to a final time of 50 µs.

Recall εl is the linear solver tolerance factor in the inexact Newton iteration. For each

method, bars correspond to run times and the line plot corresponds to the time steps.

We note that the NK solvers using 4 or 5 iterations and εl = 0.5 required less than 1/5

the number of time steps of the native FP I2 solver and achieved a 79% speedup.

tolerance factor εn from 0.1 to 0.5 to 1.0, and for the Newton-GMRES nonlinear solver

we also vary the GMRES tolerance convergence factor εl from 0.1 to 0.5.

Unlike the trapezoid-based solvers, the use of a fully adaptive method that includes

control over temporal solution error gives rise to somewhat less obvious results. However,

we can illustrate a few key trends. First, all methods generally require fewer time steps

when using a larger nonlinear tolerance factor, i.e. εn = 0.5 or 1.0. Second, these

methods generally use fewer steps with an increased number of nonlinear iterations.

Moreover, when comparing the best solvers from Table 2 with the best solvers from

Table 3, it is clear that for the DIRK solvers on this problem, there is not a significant

benefit to using the more powerful (and costly) Newton solver.

Perhaps more importantly for the DIRK methods is that, at least for the Frank-

Read problem, some solver options have little discernible effect on the number of required

time steps. First, on this problem we see little difference between the choices of linear

tolerance factor εl. In addition, it is unclear whether the additional cost per step of

DIRK4 or DIRK5 is worthwhile, since they do not require significantly fewer steps than

DIRK3. This finding implies that the underlying dislocation dynamics system may not

be sufficiently smooth as a function of time to warrant the use of methods of order

Implicit integration methods for dislocation dynamics 20

Table 2. Run time (seconds) and number of time steps for 3rd through 5th order DIRK

integrators on the Frank-Read source problem using the Anderson accelerated (AA)

fixed point solver to a final time of 50 µs. Recall εn is the nonlinear solver convergence

tolerance from (17). The native ParaDiS solver had a run time of 1120s and required

6,284 time steps for the same problem, and the DIRK solvers with εn = 1.0 took as

little as 1/49 as many steps with a maximum speedup of 98% (DIRK3 AA I4 V3).

εn = 0.1 εn = 0.5 εn = 1.0

Method Run time Steps Run time Steps Run time Steps

DIRK3 AA I2 V1 172 797 98 460 76 355

DIRK3 AA I3 V2 502 3011 53 243 31 139

DIRK3 AA I4 V3 55 239 49 218 28 127

DIRK4 AA I2 V1 146 652 84 373 69 293

DIRK4 AA I3 V2 547 3360 45 186 50 198

DIRK4 AA I4 V3 55 220 49 195 50 194

DIRK5 AA I2 V1 206 842 91 387 69 288

DIRK5 AA I3 V2 105 381 64 256 180 655

DIRK5 AA I4 V3 349 1045 260 844 35 128

greater than three; we will investigate this further in the tests that follow.

As a final note on this problem, nearly all of the more advanced solvers achieved

speedups over 60% on this problem, with most tested methods achieving 70-90%

speedup. One even achieved a run time decrease of 98% (DIRK3 AA I4 V3).

6.2. Cold Start Test Case

The Frank-Read source simulation does not do all the topological operations a larger

simulation would do. Remeshing the dislocation segments is probably the only

topological operation made in the Frank-Read source simulation apart from a collision

when the source regenerates. A larger scale simulation, with several dislocation types

and many dislocation segments usually exhibits the use of all topological operations.

These operations tend to slow down the numerical integration procedure as they cut

the time step to allow for dislocation segments collisions, annihilations and creation to

happen.

The second set of simulations focuses on the dislocation dynamics of a crystal

lattice starting from a simple line dislocation configuration. This test case provides

a larger, more physically interesting problem to better judge the performance of the

integrators and nonlinear solvers on target applications. The system consists of a BCC

single crystal in a 4.25 µm3 cube with periodic boundary conditions under constant

compressive strain along the x-axis. The initial condition contains ∼450 nodes forming

straight line screw dislocations and is evolved for 3.3 µs. The initial and final dislocation

networks are shown in Figure 3. All simulations are performed in parallel on 16 cores

Implicit integration methods for dislocation dynamics 21

Table 3. Run time (seconds) and number of time steps for 3rd through 5th order

DIRK integrators on the Frank-Read source problem using the Newton-Krylov (NK)

solver to a final time of 50 µs. Recall εn is the nonlinear solver convergence tolerance

from (17) and εl is the linear solver tolerance factor in the inexact Newton iteration.

The native ParaDiS solver took 1120s and required 6,284 time steps for the same

problem. The DIRK solvers with εn = 1.0 and 4 iterations took as little as 1/44 as

many steps. Several methods achieved a speedup of 95% over the native ParaDiS

solver.

εn = 0.1 εn = 0.5 εn = 1.0

Method Run time Steps Run time Steps Run time Steps

DIRK3 NK I2 εl0.1 174 576 620 1636 178 535

DIRK3 NK I3 εl0.1 1396 2995 664 1676 64 208

DIRK3 NK I4 εl0.1 84 235 68 216 62 202

DIRK3 NK I2 εl0.5 670 1832 104 368 432 1289

DIRK3 NK I3 εl0.5 77 240 613 1788 608 1739

DIRK3 NK I4 εl0.5 78 242 60 188 89 270

DIRK4 NK I2 εl0.1 174 478 108 305 81 229

DIRK4 NK I3 εl0.1 96 237 80 195 72 176

DIRK4 NK I4 εl0.1 84 203 71 117 67 175

DIRK4 NK I2 εl0.5 144 421 106 308 436 1060

DIRK4 NK I3 εl0.5 87 231 71 187 127 227

DIRK4 NK I4 εl0.5 86 213 87 202 53 140

DIRK5 NK I2 εl0.1 202 540 136 351 113 294

DIRK5 NK I3 εl0.1 286 620 114 253 70 170

DIRK5 NK I4 εl0.1 99 215 90 213 74 161

DIRK5 NK I2 εl0.5 222 571 139 369 86 250

DIRK5 NK I3 εl0.5 1001 1868 384 575 77 185

DIRK5 NK I4 εl0.5 88 212 366 665 70 169

(a) Initial system state (b) System state after 3.3 µs

Figure 3. (a) The initial condition for the cold start simulations containing ∼450

nodes forming straight line dislocations. (b) The final system state after 3.3 µs with

∼2850 nodes.

Implicit integration methods for dislocation dynamics 22

with a simulation tolerance of 0.5|b| and a constant strain rate 103 s−1, unless otherwise

specified.

The nature of ParaDiS simulations is such that although two identical runs will

behave the same on the macro-scale, the microstructure evolution may be different due

to dynamic load balancing and negotiation of data conflicts with topological operations.

There are two primary sources of these evolution differences. The first is related to

the dynamic load-balancing mechanism in ParaDiS which is based on the wall-clock

time spent in the dominant force calculations. The function used to obtain this time,

however, is somewhat coarse-grained. The precise wall-clock time spent on these force

calculations can therefore vary slightly between two otherwise identical runs, leading to

minor changes in load-balancing. ParaDiS imposes some restrictions on the alterations

that can be made to the dislocation network for segments crossing domain boundaries,

so changes in the domain boundaries due to minor variations in the load-balancing lead

to different micro-structure evolution. The second primary source of differences is that

the order in which topological alterations are performed on the dislocation network is

dependent on the nodal ID’s (a pair of integers identifying both the core owning a node

and the node’s index within that core’s node list). Since some topological operations

will prevent subsequent operations on adjacent segments for the remainder of a time

step, this order is significant. In particular, if a core receives incoming migrating nodes

from multiple remote cores, the order in which the communications are received affects

the node ID’s assigned to the incoming nodes. This leads to a different sequence of

alterations to the dislocation network. Thus, an alteration in the dislocation network

during one run may not occur in a second identical run. Since the length of the

simulation time step is sensitive to alterations in the dislocation network, the overall

run-time can be affected. For larger, long-running simulations these differences average

out over time, but for small initial problems run for shorter time periods, the variations

can be larger.

For simulations with the cold start initial condition and native integrator, run times

varied by up to 24.5% from the mean run time over a set of nine simulations. To help

reduce the effects of this variability, in the ensuing results the number of time steps and

wall-clock times for each solver are averaged over three identical runs.

Due to the increased nonlinearity and changing time scales of this problem, we use it

to investigate potential optimizations of implicit solver parameters. As we will elaborate

on in the following sections, for the trapezoidal solvers we investigate modifications to

the maximum number of allowed nonlinear iterations per step and to the linear solver

tolerance factor εl used with the Newton-Krylov solver. Additionally, for the DIRK

integrators we use this problem to investigate optimizations of the maximum number of

allowed nonlinear iterations, the nonlinear solver tolerance factor (εn in (17)), and the

linear solver tolerance factor (εl in (17)) used with the Newton-Krylov solver.

As with the preceding problem, we investigate the three classes of solvers separately.

First, in Figure 4, we show the run times and total time steps required for the various

trapezoidal integrators. In this plot, the bars correspond with the run times for each

Implicit integration methods for dislocation dynamics 23

method (left axis), and the line graph shows the number of time steps required for

each method (right axis). Due to our previous results from Figure 2, in which we saw

monotonically decreasing numbers of time steps as we allowed more solver iterations, we

have modified the number of allowed iterations for each solver slightly. For the standard

fixed point solver (FP) and the Newton-Krylov (NK) solvers, we now allow two through

four nonlinear iterations, while for the accelerated fixed point solver (AA) we now allow

two through six iterations, with the acceleration subspace always one smaller.

I2 I3 I4
I2 V1

I3 V2
I4 V3

I5 V4
I6 V5 I2 I3 I4 I2 I3 I4 I2 I3 I4

0

50

100

150

200

250

300

350

400

Ru
n

tim
es

 (s
)

Run Times and Time Steps for Trap Methods on the Cold Start Problem

500

1000

1500

2000

2500

3000

3500

4000

4500

Ti
m

e
st

ep
s

FP AA NK εl0.1 NK εl0.5 NK εl0.9

Figure 4. Run time and number of time steps for the trapezoid integrators using FP,

AA and NK solvers on the cold start problem to a time of 3.3 µs. Recall εl is the

linear solver tolerance factor in the inexact Newton iteration. For each method, bars

correspond to run times and the line plot corresponds to the time steps. We note that

the AA solvers using at least 3 iterations achieve up to 36% speedup over the native

FP I2 solver, and the NK solvers with εl = 0.1 require less than 1/4 the number of

steps.

Here, the results become somewhat more complex. First we consider the number of

time steps (the line plot). As before the FP solver requires the most time steps, followed

by the AA solver, and the NK solvers take the fewest steps. Also as before for the AA

and NK solvers, the number of time steps decreases as the iterations are increased.

However a few new features arise. The FP solver initially quickens with increasing

iterations, but slows dramatically if too many iterations are allowed. Similarly, the NK

solver requires slightly fewer time steps when the εl is smaller, corresponding with the

Newton convergence theory.

However, by investigating the run times we now get a more complete picture.

Implicit integration methods for dislocation dynamics 24

Although the NK solvers require the least time steps, they require additional force

evaluations to compute the finite difference Jacobian-vector products. As a result, their

significantly higher cost of each iteration outweighs the benefit in reduced time steps,

resulting in overall slower methods than the native FP solver. The AA solver, though,

provides a happy medium of faster convergence with only a marginal increase in cost,

allowing for run time decreases in comparison with FP, about 30%. Finally, we see a

turning point in the AA solver run times, wherein the cost of increased allowed iterations

(and acceleration subspace size) begins to outweigh the time step decrease, with the

fastest overall trapezoidal solver being the AA I4 V3 method.

Moving to the DIRK integrators, in Table 4 we present results for the third through

fifth order methods using the AA nonlinear solver showing both the run times and the

number of integration steps. Again, all DIRK methods require significantly fewer time

steps than the native solver (FP I2). However the DIRK methods require more work

per step than the trapezoidal methods, since they require a nonlinear solver per stage

within the step, while the trapezoidal solver requires only one such solve. As a result,

the increased work per step outweighs the time step decrease for many of the DIRK

solver options. As with the results in Tables 2 and 3, we see that orders four and five

do not admit significantly fewer steps than order three, with the fourth order method

showing slowdown for all solver options; we will therefore discontinue investigation of

DIRK4 in the remainder of these results. However, investigating those options that do

work well, we clearly see that the DIRK solvers perform best with nonlinear tolerance

factor εn of 0.5|b| or 1.0|b|. Consequently, we will discontinue investigation of εn = 0.1

in all following results.

Similarly, in Table 5 we investigate the DIRK methods of orders three and five

with the NK solver on this problem. As with the preceding results, all solvers required

significantly fewer time steps than the native solver, but the increased work per step

far outweighed this benefit, since the increased number of nonlinear solves per step is

compounded by the increase in force evaluations used in the finite difference Jacobian-

vector products. Accordingly, all NK-based methods slowed down in comparison with

the native solver. However, investigating the best solver options for this method, we see

that the optimal solver combinations consist of the third order method, using three or

four nonlinear iterations, and with linear tolerance factor εl of either 0.5 or 0.9.

In summary, for the cold start problem, we find that the fastest solver is the

Trapezoid integrator using the accelerated fixed point solver, with 4 allowed solver

iterations and 3 saved vectors. Moreover, we find that although no Newton-based solver

achieves a speedup over the native solver, all require significantly fewer time steps, with

the fastest Trapezoidal solver (Trap NK εl 0.1) taking 912 steps, and the fastest DIRK

solver (DIRK5 NK I4 εl 0.9) taking 386 steps.

In Figure 5, we compare the dislocation density over time in the cold start problem

using the native ParaDiS trapezoid integrator with the standard fixed point solver, the

fastest trapezoid integrator with the accelerated fixed point solver and the fastest third

and fifth order DIRK methods with the accelerated fixed point solver. The different

Implicit integration methods for dislocation dynamics 25

Table 4. Run time (seconds) and number of time steps for 3rd through 5th order

DIRK methods using the AA solver on the cold start problem to a time of 3.3 µs.

Recall εn is the nonlinear solver convergence tolerance from (17). The native ParaDiS

solver required 268 seconds and 4,021 time steps for the same problem. We note that

although all DIRK AA solvers require less than 1/5 the number of time steps as the

native solver, only the DIRK 3 AA methods with εn of 0.5 and 1.0 are faster with

speedups between 17% and 29%.

εn = 0.1 εn = 0.5 εn = 1.0

Method Run time Steps Run time Steps Run time Steps

DIRK3 AA I4 V3 428 696 212 419 197 443

DIRK3 AA I5 V4 327 538 220 399 190 434

DIRK3 AA I6 V5 297 476 220 408 201 420

DIRK3 AA I7 V6 265 408 215 393 222 429

DIRK4 AA I4 V3 445 576 392 544 398 525

DIRK4 AA I5 V4 422 476 357 515 328 497

DIRK4 AA I6 V5 410 465 406 533 372 520

DIRK4 AA I7 V6 400 447 418 532 360 530

DIRK5 AA I4 V3 581 589 273 345 274 337

DIRK5 AA I5 V4 531 486 307 342 284 331

DIRK5 AA I6 V5 475 419 316 339 301 339

DIRK5 AA I7 V6 446 376 299 305 279 308

methods all show good agreement in the dislocation density curves throughout the

simulation.

6.3. Warm Start Test Case

Our remaining computational results focus on our third, and most challenging, test

problem. As with the cold start problem, this case consists of a BCC single crystal in

a 4.25 µm3 cube with periodic boundary conditions, but where the simulation begins

at the end of the cold start test case with a more developed structure. This simulation

starts with ∼2850 interacting dislocations and is run for either 1.1 µs or 2.95 µs from

the final time of the cold start case, 3.3 µs. Thus the final simulation times are either

4.4 µs or 6.25 µs, as detailed in each set of results. The final dislocation networks for

each final time are shown in Figure 6. This restarted initial condition provides insight as

to how well the integrators and nonlinear solvers function on a system after dislocations

have begun to interact. Tests are also conducted at different constant compressive strain

rates from 10−1 s−1 to 103 s−1 along the x-axis. Again, all simulations are performed in

parallel on 16 cores with a simulation tolerance of 0.5|b|.
Similar to the cold start case, for this restarted initial condition and native

integrator, the wall-clock time differs from the mean by up to 10%, again over nine

runs. Thus, in the ensuing results the number of time steps and wall-clock times for

Implicit integration methods for dislocation dynamics 26

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s) 1e 3

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
e
n
si

ty

1e13 Dislocation Density on the Cold Start Problem

Trap

Trap AA I4 V3
DIRK3 AA I4 V3 εn 1.0

DIRK5 AA I4 V3 εn 1.0

Figure 5. Dislocation density for the cold start problem using the trapezoid

method with two nonlinear iterations, trapezoid using Anderson acceleration with four

iterations and three residual vectors, and the 3rd and 5th order DIRK integrators with

Anderson acceleration with four nonlinear iterations and three residual vectors with

nonlinear tolerance factor εn 1.0. The different methods show good agreement in the

density curves throughout the duration of the simulation.

(a) System state after 4.4 µs (b) System state after 6.25 µs

Figure 6. (a) The final dislocation network for the warm start test after 1.1 µs for

a final simulation time of 4.4 µs containing ∼2920 nodes. (b) The final warm start

system state after 2.95 µs for a final time of 6.25 µs with ∼4950 nodes.

Implicit integration methods for dislocation dynamics 27

Table 5. Run time (seconds) and number of time steps for 3rd and 5th order DIRK

methods using the NK solver on the cold start problem to a time of 3.3 µs. Recall

εn is the nonlinear solver convergence tolerance from (17) and εl is the linear solver

tolerance factor in the inexact Newton iteration. The native ParaDiS solver required

268 seconds and 4,021 time steps for the same problem. We note that although all

DIRK NK solvers require less than 1/6 the number of time steps as the native solver,

none are faster due to the increased solver cost per step.

εn = 0.5 εn = 1.0

Method Run time Steps Run time Steps

DIRK3 NK I2 εl0.1 856 585 780 542

DIRK3 NK I3 εl0.1 743 485 658 462

DIRK3 NK I4 εl0.1 824 494 653 466

DIRK3 NK I2 εl0.5 802 586 588 514

DIRK3 NK I3 εl0.5 682 486 536 430

DIRK3 NK I4 εl0.5 575 423 543 428

DIRK3 NK I2 εl0.9 714 582 585 494

DIRK3 NK I3 εl0.9 596 446 540 447

DIRK3 NK I4 εl0.9 671 456 484 400

DIRK5 NK I2 εl0.1 1493 599 1195 492

DIRK5 NK I3 εl0.1 1148 475 1122 459

DIRK5 NK I4 εl0.1 1162 451 1081 432

DIRK5 NK I2 εl0.5 1284 573 953 459

DIRK5 NK I3 εl0.5 997 433 930 414

DIRK5 NK I4 εl0.5 1085 416 858 376

DIRK5 NK I2 εl0.9 1103 525 845 433

DIRK5 NK I3 εl0.9 971 420 807 384

DIRK5 NK I4 εl0.9 892 386 802 361

each solver are averaged over three identical runs. As with the preceding problem, we

investigate the three classes of solvers separately.

In Figure 7, we plot both the run times and total time steps required for the various

trapezoidal integrators. In this plot as with Figure 4, the bars correspond with the run

times and the line graph shows the number of time steps required for each method. As

before, we plot results for the FP, AA and NK nonlinear solvers, but we have slightly

increased the number of allowed nonlinear iterations for the AA and NK solvers due to

the increased problem difficulty. Again, the NK solver requires the fewest time steps,

followed by the AA and FP solvers. Also, again the NK solver with linear tolerance factor

εl = 0.1 and largest allowed iterations results in the fewest time steps. Similarly, the

required number of time steps for the AA solver decreases monotonically with increased

iterations.

However, the differences between Figures 4 and 7 are perhaps the most interesting.

First, we see that the basic FP solver performance degrades with increasing iterations,

Implicit integration methods for dislocation dynamics 28

I2 I3 I4
I2 V1

I3 V2
I4 V3

I5 V4
I6 V5

I7 V6 I3 I4 I5 I3 I4 I5 I3 I4 I5
0

50

100

150

200

250

300

350

400

450

Ru
n

tim
es

 (s
)

Run Times and Time Steps for Trap Methods on the Warm Start Problem

0

500

1000

1500

2000

2500

Ti
m

e
st

ep
s

FP AA NK εl0.1 NK εl0.5 NK εl0.9

Figure 7. Run time and number of time steps for the trapezoid integrator with FP,

AA and NK solvers on the warm start problem. Results used a constant strain rate

103 s−1 to a final time of 4.4 µs. Recall εl is the linear solver tolerance factor in the

inexact Newton iteration. We note that nearly all AA and NK solvers are now faster

than the native solver, with the AA I7 V6 solver taking less than half the run time.

As before, the NK solvers take the fewest steps, with NK εl 0.1 requiring less than 1/7

the number of time steps of the native solver.

whereas last time it improved before getting worse. Second, in nearly every case the

AA and NK solvers resulted in a run time speedup over the native FP I2 solver, with

the AA I7 V6 solver achieving a speedup of 52%. These results indicate that the warm

start problem indeed focused on a more challenging application than the cold start

problem – as dislocations grow and interact, advanced solvers are needed to handle the

increasingly challenging nonlinear equations. Moreover, we see that although the NK

solvers are still currently slower than the AA solvers, their dramatic reduction in time

steps implies that further enhancements to how the Newton systems are created and

solved may reap significant rewards, as we will elaborate on at the end of this section.

Similarly, in Figures 8 and 9 we present the same bar charts for the DIRK solvers.

Specifically, in Figure 8 we show results using the AA solver for the third and fifth

order DIRK methods, using nonlinear tolerance factors εn of 0.5 and 1.0, allowing from

four through seven nonlinear iterations. We may immediately draw some interesting

conclusions. First, all of the presented results achieved a speedup over the native FP

I2 solver, with speedups ranging from 8% (DIRK 5, εn 0.5, I5 V4 and I7 V6) up to

56% (DIRK 3, εn 1.0, I4 V3). Moreover, the third order method is uniformly faster

Implicit integration methods for dislocation dynamics 29

than the fifth order method, with the fifth order method not resulting in a dramatic

reduction in time steps. We believe that this may be attributed to either a lack of

sufficient temporal differentiability in dislocation dynamics simulations, or possibly

the loose overall requested solver tolerance (0.5|b|) that lies outside the asymptotic

convergence regimes of these methods. Moreover, although less significant, it appears

that the nonlinear tolerance factor εn of 1 slightly outperforms 0.5. Finally, it again

appears as though the simulation times do not depend heavily on the maximum allowed

iterations, as long as these are sufficiently large to allow solver convergence.

I4 V3
I5 V4

I6 V5
I7 V6

I4 V3
I5 V4

I6 V5
I7 V6

I4 V3
I5 V4

I6 V5
I7 V6

I4 V3
I5 V4

I6 V5
I7 V6

0

50

100

150

200

250

300

350

Ru
n

tim
es

 (s
)

Run Times and Time Steps for DIRK AA Methods on the Warm Start Problem

100

105

110

115

120

125

130

135

140

Ti
m

e
st

ep
s

DIRK3 εn0.5 DIRK3 εn1.0 DIRK5 εn0.5 DIRK5 εn1.0

Figure 8. Run time and number of time steps for 3rd and 5th order DIRK integrators

with the AA solver on the warm start problem. Results used a constant strain rate

103 s−1 to a final time of 4.4 µs. Recall εn is the nonlinear solver convergence tolerance

from (17). The native FP I2 solver required 372 seconds and 2267 time steps. We note

that all solvers take less run time and fewer steps than the native solver, with the

DIRK3 εn 1.0 I4 V3 taking less than half the run time, and DIRK5 εn 1.0 with 6

iterations taking 1/21 the time steps of the native solver.

Figure 9 presents the same data for the NK solver using the third order DIRK

method, where we vary the number of allowed iterations (three or four), the nonlinear

tolerance convergence factor εn (0.5 or 1.0), and the linear tolerance convergence factor

εl (0.1, 0.5 and 0.9). Again, a few conclusions may be immediately drawn. First, four

iterations always outperforms three in both time steps and simulation time. Second, εn
of 1.0 is uniformly better in both metrics than the corresponding runs with a value of

0.5. Third, larger values of εl similarly performed better on average in both run time and

time steps. Unfortunately, however, none of these results were faster than the native FP

Implicit integration methods for dislocation dynamics 30

I2 solver (372 seconds), again due to the multiple implicit stages per step and increased

cost of each Newton solve.

In summary, for the above results from the warm start problem, we find that the

fastest solver is the DIRK3 integrator using the accelerated fixed point solver, with 4

iterations and 3 saved vectors which lead to a 56% speedup taking 116 steps. The best

Trapezoid integrator achieved a 52% speedup taking 568 steps using the accelerated

fixed point solver with 7 iterations and 6 saved vectors.

I3 I4 I3 I4 I3 I4 I3 I4 I3 I4 I3 I4
0

100

200

300

400

500

600

700

800

900

Ru
n

tim
es

 (s
)

Run Times and Time Steps for DIRK3 NK Methods on the Warm Start Problem

140

145

150

155

160

165

170

175

180

Ti
m

e
st

ep
s

εn0.5
εl0.1

εn0.5
εl0.5

εn0.5
εl0.9

εn1.0
εl0.1

εn1.0
εl0.5

εn1.0
εl0.9

Figure 9. Run time and number of time steps for 3rd order DIRK integrator with

the NK solver on the warm start problem. Results used a constant strain rate 103 s−1

to a final time of 4.4 µs. Recall εn is the nonlinear solver convergence tolerance from

(17) and εl is the linear solver tolerance factor in the inexact Newton iteration. The

native FP I2 solver required 372 seconds and 2,267 time steps, so the fastest of these

solvers (εn 1.0, εl 0.9, I4) took 68% longer to run, but required only 1/15 the number

of time steps.

As this problem is indicative of a production environment, we additionally

investigated two DIRK solver options that often result in significant performance

improvements: the choice of implicit predictor and the choice of time step adaptivity

algorithm. As described in Section 3.2, we allow a variety of algorithms to predict the

solution to each upcoming implicit solve. Thus, we tried the three predictors (a)-(c)

from Section 3.2, with the third and fifth order integrators, the AA and NK solvers, and

allowing either four or five nonlinear iterations. All solvers used the optimal nonlinear

tolerance factor εn of 1.0, and the NK solver used the optimal linear tolerance factor εl
of 0.9. Unfortunately, however, we saw no appreciable difference in either the number

Implicit integration methods for dislocation dynamics 31

of time steps required (each was within 12% of the optimum) or the speedups (each

was within 10% of the optimum), and indeed the optimum choice varied between each

solver.

The choice of time step adaptivity algorithm, however, was somewhat more

illustrative. As seen in Figure 10, we used the third order DIRK method with AA

solver and either four or five nonlinear iterations, and tested three different choices of

time step adaptivity algorithm. Here, PID refers to the controller in (13), PI refers to

the controller in (14), and I refers to the controller in (15). These results indicate that

for this problem, the simplest controller, I, gives the least overall time steps for the

problem (including both accepted and discarded steps). The key differences between

these algorithms is the amount of time step history that they take into consideration

when determining a prospective time step size, with the I controller examining only the

most-recent step, the PI controller examining two steps, and the PID examining three.

These results are unsurprising, since dislocations may be added or removed between

every step, which can lead to more rapid variations in the dynamical time scale as steps

proceed. As a result, while a longer step history may be beneficial for many problems,

it proves a slight hindrance here.

PID PI I
PID PI I0

20

40

60

80

100

120

140

160

Ti
m

e
st

ep
s

DIRK3 AA I4 V3 εn1.0 DIRK3 AA I5 V4 εn1.0

Time Steps for Adaptivity Controllers on the Warm Start Problem

Figure 10. Number of time steps for 3rd order DIRK integrator with the AA solver

on the warm start problem, using various time step controller methods. Here the PID,

PI and I controllers are shown in (13), (14) and (15), respectively. Results used a

constant strain rate 103 s−1 to a final time of 4.4 µs. We note that the I controller

resulted in the least steps, requiring 1/19 as many as the native solver.

Next, we investigate the performance of these solvers on the warm start problem,

but vary the strain rate to be 103, 102, 101, 100, or 10−1 s−1. In order to generate results

that more accurately capture the performance of each method, these simulations were

Implicit integration methods for dislocation dynamics 32

run to a later final time (6.25 µs) than the preceding tests (4.4 µs). For this suite of

tests, we narrow our solver choices to only the best set from each category:

• TRAP FP, the native ParaDiS solver, with two iterations,

• TRAP AA, the Anderson accelerated fixed point solver, using six or seven iterations,

• TRAP NK, the Newton-GMRES solver, using εl = 0.5 and either three or four

iterations,

• DIRK3 AA, the third-order DIRK method with the accelerated fixed point solver,

using εn = 1.0 and either four or five nonlinear iterations and the I controller, and

• DIRK3 NK, the third-order DIRK method with the Newton-GMRES solver, using

εn = 1.0, εl = 0.9, four nonlinear iterations and the I controller.

Results showing the number of time steps for our final suite of solvers at these

strain rates are given in Table 6. We immediately see that for every strain rate, the

adaptive DIRK solvers require far fewer time steps than any other method. These are

followed by the NK and then AA trapezoidal solvers, which also require a fraction of

the number of time steps as compared with TRAP FP I2.

Table 6. Number of time steps for each solver on the warm start problem for various

constant strain rates to a final time of 6.25 µs. Recall εn is the nonlinear solver

convergence tolerance from (17) and εl is the linear solver tolerance factor in the

inexact Newton iteration. We note that for all strain rates, the new solvers required

fewer steps than the native FP I2 solver, with DIRK3 AA taking the fewest overall

steps.

Strain Rate (s−1)

Method 103 102 101 100 10−1

TRAP FP I2 10065 9137 5809 5107 5104

TRAP AA I6 V5 3225 2032 1628 1552 1348

TRAP AA I7 V6 2866 1891 1101 1260 1397

TRAP NK I3 εl0.5 1544 1004 1098 1041 1143

TRAP NK I4 εl0.5 1396 837 960 891 857

DIRK3 AA I4 V3 εn1.0 451 323 327 338 320

DIRK3 AA I5 V4 εn1.0 452 297 314 328 323

DIRK3 NK I4 εn1.0 εl0.9 483 351 361 358 359

The resulting run times for these tests are given in Table 7. Here, with the exception

of the DIRK method with Newton-GMRES solver, we see that all of the new solvers

achieve a speedup over the native solver. Moreover, even the DIRK method with the

Newton solver does not show a tremendous slowdown, indicating that Newton solver

improvements for this problem may achieve strong results. Furthermore, we see that

for the two fastest strain rates the adaptive DIRK method with AA solver achieves the

fastest result, while for the three slowest strain rates the trapezoidal method with AA

Implicit integration methods for dislocation dynamics 33

solver is fastest. Finally, we notice an interesting trend that the higher the strain rate,

the better the DIRK method performs in comparison with the native solver.

Table 7. Run times (seconds) for each solver on the warm start problem for various

constant strain rates to a final time of 6.25 µs. Recall εn is the nonlinear solver

convergence tolerance from (17) and εl is the linear solver tolerance factor in the

inexact Newton iteration. We note that for all strain rates, all new solvers except

DIRK 3 NK ran faster than the native FP I2 solver, with DIRK3 AA I4 achieving the

largest overall speedup. For higher strain rates, the third order integrator is fastest,

but for lower strain rates, the trapezoidal method with the accelerated fixed point

solver is fastest.

Strain Rate (s−1)

Method 103 102 101 1 10−1

TRAP FP I2 2526 973 629 566 564

TRAP AA I6 V5 1762 437 335 316 275

TRAP AA I7 V6 1627 452 236 275 294

TRAP NK I3 εl0.5 2116 516 499 497 550

TRAP NK I4 εl0.5 2070 501 501 483 483

DIRK3 AA I4 V3 εn1.0 1011 340 330 335 320

DIRK3 AA I5 V4 εn1.0 1098 322 335 333 325

DIRK3 NK I4 εn1.0 εl0.9 2953 956 959 956 932

Finally, we analyze the structure obtained during the above warm start simulations

to investigate which nodes are responsible for nonlinear solver failures. Results are taken

from a single run of the warm start case with the later final time of 6.25 µs and the

largest strain rate of 103 s−1. Simulations use the trapezoid method with either the

native fixed point solver with 2 nonlinear iterations or the Anderson accelerated solver

with 7 nonlinear iterations and 6 residual vectors.

There exist several mechanisms that may reduce the time-step size of time

integrators. In [3], short dislocation segments and segments at close proximity have

been identified as the principal cause of time integrator time-step failure. For each failed

nonlinear solve attempt in the trapezoid method, Figure 11 shows the distance from a

failed node to nearest node in the domain. A large majority of failed nodes are within

10|b| of another node. Figure 12 shows the histogram of segment lengths to a failed node

for all unsuccessful solve attempts. It shows that not many short dislocation segments

are present in the simulations as they are fairly well distributed between 0 and 500|b|, the

maximum allowed segment size. In these simulations, the main cause of solver failure

is due to nodes at close proximity to other nodes that are not necessarily connected

to each other. The force per unit length between segments is inversely proportional

to the distance between them. As dislocation segments get closer to each other, their

interaction force becomes more non-linear, and the resulting nonlinear problems get

harder to solve. This may explain why segments at close proximity failed predominantly.

Implicit integration methods for dislocation dynamics 34

0 100 200 300 400 500
Distance (|b|)

0

500

1000

1500

2000

Fr
e
q
u
e
n
cy

Distance to Nearest Node for
Failed Solves with TRAP I2

(a) TRAP I2

0 100 200 300 400 500
Distance (|b|)

0

5

10

15

20

Fr
e
q
u
e
n
cy

Distance to Nearest Node for
Failed Solves with TRAP AA I7 V6

(b) TRAP AA I7 V6

Figure 11. Distance between a failed node and the nearest node in the domain for

all failed solve attempts with (a) the native fixed point method and (b) the Anderson

accelerated solver. A majority of failed solves are due to nodes at close proximity to

one another.

0 100 200 300 400 500
Segment Length (|b|)

0

100

200

300

400

500

600

Fr
e
q
u
e
n
cy

Segment Lengths to Max Error Node for
Failed Solves with TRAP I2

(a) TRAP I2

0 100 200 300 400 500
Segment Length (|b|)

0

1

2

3

4

5

6

7

8

Fr
e
q
u
e
n
cy

Segment Lengths to Max Error Node for
Failed Solves with TRAP AA I7 V6

(b) TRAP AA I7 V6

Figure 12. Distribution of segment lengths connected to a failed node for all

unsuccessful solve attempts with (a) the native fixed point solver and (b) the Anderson

accelerated solver. The length of the segments does not seem to be a cause of solver

failure.

A Note on Newton’s Method Performance. As discussed in Section 4.2, within each

linear iteration the Newton-Krylov method requires either a Jacobian-vector product or

an approximation to it. For these tests, we did not implement a full Jacobian as the

implementation is time-consuming to complete and verify. As such, we used a finite-

difference approximation to the Jacobian-vector products. This approximation results

in an extra force evaluation for each linear iteration. These extra force evaluations are

costly in terms of run time and have the potential to greatly skew the cost of Newton’s

method. Based on the above results, we observed that Newton’s method gives a more

Implicit integration methods for dislocation dynamics 35

robust solve than the original fixed point method. Since its rate of convergence is faster

than fixed point, we expect a potential gain from Newton’s method possibly over the

accelerated fixed point if we can remove the extra force evaluations and employ an

analytic Jacobian calculation.

Table 8 shows the numbers of time steps, iterations, Jacobian evaluations, and

nonlinear function evaluations for the best fixed point and Newton solvers on the warm

start problem used for the strain rate study. If we assume the force evaluations, thus

the function evaluations, strongly dominate the run time cost, then a coarse estimate

of the cost for a function evaluation is achieved by dividing the total run time by the

number of function evaluations. If we then subtract the number of linear iterations

from the number of function evaluations for the Newton runs and multiply the cost

per function evaluation estimate by the new number of function evaluations, we get an

estimated cost of a run with an analytical Jacobian. These numbers are in the estimated

run time column. While these numbers do not fully account for the cost of computing

the Jacobian, we note that this calculation can be added to the function evaluation

in a way that makes the cost of the Jacobian a minimal added expense over a single

function evaluation. These numbers show a very significant potential benefit in the use

of Newton’s method. Future work will include implementation of an analytic Jacobian

in ParaDiS.

Table 8. The number of successful time steps, nonlinear iterations, linear iterations,

Jacobian-vector products, function evaluations, and run times for trapezoid and DIRK

integrators using the Newton-GMRES solver. The final column is the estimated run

time using an analytic Jacobian in ParaDiS. Results are from the warm start problem

run to a final time of 6.25 µs with a constant strain rate of 103 s−1 and a simulation

tolerance of 0.5|b|. Recall εn is the nonlinear solver convergence tolerance from (17)

and εl is the linear solver tolerance factor in the inexact Newton iteration.

Method Steps Nonlin Linear Jv Fcn Run Est. Run

Iter Iter Eval Eval Time (s) Time (s)

TRAP FP I2 10,434 15,627 — — 15,627 2,615 —

TRAP AA I7 V6 2,866 10,466 — — 10,466 1,627 —

TRAP NK I3 εl0.5 1,544 3,386 5,875 7,643 12,804 2,135 1,157

TRAP NK I4 εl0.5 1,396 3,279 5,763 7,627 12,440 2,089 1,121

DIRK3 NK I4 483 4,041 10,029 13,909 20,647 2,953 1,519

εn1.0 εl0.9

Implicit integration methods for dislocation dynamics 36

7. Conclusions

Dislocation dynamics simulations present a unique set of challenges for implicit solvers

and time integration methods: rapidly-changing nodal topology, non-deterministic

results, and costly nonlinear function evaluations. As such, many “standard” choices for

optimal integrators and solvers do not fit well in this context, including multistep instead

of multi-stage methods, higher order solvers, higher order time adaptivity controllers,

and higher order implicit predictors.

This paper shows performance results, in both number of time steps and run

time, for an accelerated fixed point solver and higher order multi-stage time integrators

on dislocation dynamics simulations. Both the solvers and integrators were employed

through the SUNDIALS suite of codes [35] including KINSOL and ARKode [37]. These

solvers and integrators are compared against a standard trapezoid integrator with a

fixed point nonlinear solver and various parameters were investigated to determine

recommended values for this application.

Results show that the Anderson acceleration method applied to the fixed point

solver can lead to significant benefits in both run time and time step size. This method

does not add much complexity to the solver implementation nor to run time per iteration

but did accelerate the fixed point solver. Further, the diagonally implicit Runge-Kutta

(DIRK) methods also led to larger time steps and significant speedups in run time. The

third order DIRK methods resulted in much better performance than either the fourth

or fifth order methods.

In general, for easier problems, like those earlier in time or with lower strain rates,

we observed that a high order integrator was not needed and a lower order integrator

with the accelerated fixed point method was enough to give very good performance

in both run time and time step size. However, as problems got more difficult, the

third order integrator showed very significant benefits over the lower order approaches.

Furthermore, the DIRK methods employ an error estimate in their choice of time step

which helps to ensure accuracy of the resulting numerical solutions. As a result, we

recommend use of the DIRK methods with the accelerated fixed point solver in general.

Results further indicate that solver failures occur predominantly at nodes in close

proximity to other nodes. This finding is similar to a finding in [3]. One cause of time

step failure with the Trapezoid integrator was found to be failed nonlinear solves. Since

the force calculations for these nodes become more nonlinear, it is not surprising that a

more robust nonlinear solver was found to yield fewer failed time steps.

A basic Newton-Krylov method was tested along with the other nonlinear solvers.

The implementation of this method employed a finite-difference approximation for the

matrix-vector multiplies needed in the linear solver iterations. While it was simple

to construct this implementation, it was not efficient and required far more function

evaluations (force calculations) than would be needed with an analytical Jacobian

implementation. However, results with this implementation showed that the Newton

method also results in larger time steps. Future work will look at efficiency of a Newton

Implicit integration methods for dislocation dynamics 37

method implemented with an analytic Jacobian.

Implicit integration methods for dislocation dynamics 38

References

[1] A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T. G. Pierce, and V. V.

Bulatov. Enabling strain hardening simulations with dislocation dynamics. Modelling Simul.

Mater. Sci. Eng., 15:553–595, 2007.

[2] V. Bulatov, W. Cai, J. Fier, M. Hiratani, G. Hommes, T. Pierce, M. Tang, M. Rhee, K. Yates, and

T. Arsenlis. Scalable line dynamics in paradis. Conference on High Performance Networking

and Computing, Proceedings of the Proceedings of the ACM/IEEE Super Computing 2004

Conference (SC’04), p. 19., page 19, 2004.

[3] R.B. Sills and W. Cai. Efficient time integration in dislocation dynamics. Modelling Simul. Mater.

Sci. Eng., 22:025003, 2014.

[4] M Verdier, M Fivel, and In Groma. Mesoscopic scale simulation of dislocation dynamics in

fcc metals: Principles and applications. Modelling and Simulation in Materials Science and

Engineering, 6(6):755, 1998.

[5] B Devincre, R Madec, G Monnet, S Queyreau, R Gatti, and L Kubin. Modeling crystal plasticity

with dislocation dynamics simulations: The micromegas code. Mechanics of Nano-objects.

Presses de l’Ecole des Mines de Paris, Paris, pages 81–100, 2011.

[6] KW Schwarz. Simulation of dislocations on the mesoscopic scale. i. methods and examples. Journal

of Applied Physics, 85(1):108–119, 1999.

[7] N Ghoniem, M, S-H Tong, and LZ Sun. Parametric dislocation dynamics: a thermodynamics-based

approach to investigations of mesoscopic plastic deformation. Physical Review B, 61(2):913,

2000.

[8] Jianming Huang and Nasr M Ghoniem. Accuracy and convergence of parametric dislocation

dynamics. Modelling Simul. Mater. Sci. Eng, 10:1–19, 2002.

[9] J. D. Lambert. Numerical Methods for Ordinary Differential Systems. John Wiley & Sons, Ltd.,

West Sussex, England, 1991.

[10] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential Equations and

Differential-Algebraic Equations. SIAM, Philadelphia, 1998.

[11] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia, 1995.

[12] D. G. Anderson. Iterative procedures for nonlinear integral equations. J. Assoc. Comput.

Machinery, 12:547–560, 1965.

[13] N. N. Carlson and K. Miller. Design and application of a gradient-weighted moving finite element

code I: in one dimension. SIAM J. Sci. Comput., 19(3):728–765, 1998.

[14] P. A. Lott, H. F. Walker, C. S. Woodward, and U. M. Yang. An accelerated Picard method for

nonlinear systems related to variably saturated flow. Advances in Water Resources, 38:92–101,

2012.

[15] H. F. Walker, C. S. Woodward, and U. M. Yang. An accelerated fixed-point iteration for

solution of variably saturated flow. In J. Carrera, editor, XVIII International Conference on

Water Resources, 2010. XVIII International Conference on Computational Methods in Water

Resources (CMWR 2010), Barcelona, Spain, June 21-24, 2010.

[16] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys.,

73:325–348, 1987.

[17] W. Cai and V. Bulatov. Mobility laws in dislocation dynamics simulations. Materials Science

and Engineering A, 387:277, 2004.

[18] N. R. Barton, J. V. Bernier, R. Becker, A. Arsenlis, R. Cavallo, J. Marian, M. Rhee, H.-S. Park,

B. A. Remington, and R. T. Olson. A multiscale strength model for extreme loading conditions.

J. Appl. Phys., 109:073501, 2011.

[19] D. Kincaid and W. Cheney. Numerical Analysis. AMS, Providence, 2002.

[20] C.A. Kennedy and M.H. Carpenter. Additive Runge-Kutta schemes for convection-diffusion-

reaction equations. Appl. Numer. Math., 44:139–181, 2003.

[21] G. Söderlind. The automatic control of numerical integration. CWI Quarterly, 11:55–74, 1998.

Implicit integration methods for dislocation dynamics 39

[22] G. Söderlind. Digital filters in adaptive time-stepping. ACM Trans. Math. Soft., 29:1–26, 2003.

[23] G. Söderlind. Time-step selection algorithms: Adaptivity, control and signal processing. Appl.

Numer. Math., 56:488–502, 2006.

[24] A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, and C.S.

Woodward. SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers. ACM

Trans. Math. Soft., 31(3):363–396, 2005.

[25] S.D. Cohen and A.C. Hindmarsh. CVODE, a stiff/nonstiff ODE solver in C. Computers in

Physics, 10(2):138–143, 1996.

[26] S.R. Billington. Type-insensitive codes for the solution of stiff and nonstiff systems of ordinary

differential equations. Master’s thesis, University of Manchester, United Kingdom, 1983.

[27] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II – Stiff and Differential-

Algebraic Problems. Springer, Heidelberg, 2010.

[28] A. Kværnø. Singly diagonally implicit Runge-Kutta methods with an explicit first stage. BIT

Numerical Mathematics, 44:489–502, 2004.

[29] H. F. Walker and P. Ni. Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal.,

49:1715–1735, 2011.

[30] H. Fang and Y. Saad. Two classes of multisecant methods for nonlinear acceleration. Numer.

Linear Algebra Appl., 16:197–221, 2009.

[31] A. Toth and C. T. Kelley. Convergence analysis for Anderson acceleration. Submitted, 2013.

[32] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM J. Numer. Anal.,

19:400–408, 1982.

[33] S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact Newton method.

SIAM J. Sci. Comput., 17:16–32, 1996.

[34] Y Saad and M H Schultz. GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems. SIAM J. Sci. Statist. Comput, 7(3):856–869, 1986.

[35] C.S. Woodward et al. SUNDIALS. http://computation.llnl.gov/casc/sundials/main.html.

[36] P.N. Brown and Y. Saad. Hybrid krylov methods for nonlinear systems of equations. SIAM J.

Sci. Stat. Comp., 11:450–481, 1990.

[37] D.R. Reynolds et al. The ARKode solver. http://faculty.smu.edu/reynolds/ARKode/.

Acknowledgments

Support for this work was provided through the Scientific Discovery through Advanced

Computing (SciDAC) program funded by the U.S. Department of Energy Office of

Advanced Scientific Computing Research and the National Nuclear Security Agency.

This work was performed under the auspices of the U.S. Department of Energy

by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Lawrence Livermore National Security, LLC. This work was also performed by Southern

Methodist University under subcontract B603971 from Lawrence Livermore National

Laboratory. Release number LLNL-JRNL-656343.

